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Geometric Algebra

e [ he geometric product ab does it all

e Algebraically, it is

— linear
— associative
— non-commutative

— invertible

e \We will visualize these properties



Properties

Geometry Algebra

a A'b spanning anti-commutation 5(ab — ba)

a-b complementation commutation 2(ab + ba)
perpendicularity

orthogonalization invertibility

rotation exponentiation



Derived products
e - -a = symmetric part of za

1

r-a=—
2

(za + ax)

e x A\ a = anti-symmetric part of za

1
:c/\a,EE(:ca—aac)

e Decomposition of geometric product

ra=x-a+x/Na



Outer product: spanning

a/Nb= —bAa

e dimensionality
TR e attitude
e sense

e Mmagnitude
DEMOouter



Outer product

e Given a, all x with same = A a are on a line
e Extension: aAbAcis a volume

e Vectors, bivectors, trivectors, etc.

All elements of geometric algebra

e dim(AAB) = dim(A) 4+ dim(B)
(but beware of overlap)



Inner product: perpendicularity

e A.-B is part of B perpendicular to A

DEMOinner
e Given a, all x with same x-a are on a hyperplane

e dim(A-B) = dim(B) — dim(A)



Parallel Component

Consider x =z | x| relative to some vector a

e Geometrically: ) is part of x parallel to a
e Classically: T)|re=2T-a and x| ANa =0

e Geometric Algebra: add them and divide
az||a,=:1:||~a—|—:13||/\a=:13||-a,=az~a

Solvable: z|| = (x-a)/a



Perpendicular Component

e Geometrically: x| is part of x perpendicular to a
e Classically: x; Aa=xANaand x| -a=0

e Geometric Algebra: zja=xANa

Solvable: z| = (x ANa)/a

DEMODproj



Geometric Product is Invertible

e xra=x-a-+ x/Aa IS invertible

DEMOinvertible

r= (xa)/a=(x-a)/a+ (xANa)/a

e Can divide by vectors, bivectors



Rotations

e Many ways to do rotations in geometric algebra

e Given z and plane I containing = (so x A1 = 0)

Rotate z in the plane

e Coordinate free view
Rz = bit of £ and bit of perpendicular to z

(amounts depend on rotation angle)



e Perpendicular to = in I plane (anti-clockwise) is

x-l =xl = —1Ix
DEMOrotdefinition

e Rotation as post-multiply:

Re = x(cos o) + (zI)(singp) = xz(coso + Isin @)

e Rotation as pre-multiply:

Rex = (cos¢) + (sing)(—Ix) = (cos¢ — Ising)x



Complex Rotations

e Related to complex numbers
I = -1

but I has a geometrical meaning since xI = —1Ix

e We can write [cos¢ + Ising = el?

e Each rotation plane has own bivector I

SO many ‘“‘complex numbers” in space

e Bivector basis (i=exAe3, j=ezAe1, k=e1 ANep)

I =ai+ gj+k



Rotations in 3D

e Pick rotation plane I and (possibly non-coplanar)
vector z

CBZCCJ_—FCCH

Would like to get RI¢$ = —+ R]¢£IZ||
® ) rotation:

either e_l¢w|| or mHqu5 (or even e_I¢/2x||eI¢/2)



e | rotation:

z e'? = cosox) +sing(x 1)

vector trivector

e 1%z, =cosdx, —sind(Iz,)
e Combines in just the right way so that

e Bottom line:

o 19/2,16/2 — z 1 + Rrgr) = Rpga



Rotors

DEMOrotor
® SO R_jpx = e 10/2e10/2

e Further,

R_jpX = e 19/2Xel?/2 = RXR™1

where X is any geometric object (vector, plane,
volume, etc.)

e R = 19/2 is called a rotor

R—1 = ¢19/2 is called the inverse rotor



Quaternions
e A rotor is a (unit) quaternion

e I, J, kK are not complex numbers, they are

— bivectors (not vectors!)
— rotation operators for the coordinate planes
— basis for planes of rotation

— an intrinsic part of the algebra



Composing Rotations

Composition of rotations through multiplication
(RooR1)z = Rp(R1zR]")Ry* = (RaR1)z(RaR1) ™
e RoRy IS again a rotor.
It represents the rotation R, o Ry

e Note: use geometric product to multiply
rotors/quaternions

No new product is needed



Interpolation

From rotor R4 to rotor Rp in n similar steps:
R'Ry=Rp <+ R=(Rp/R)""
So

R = (el#/2)1/n = 16/(2n)

DEMOinterpolation
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All you need is blades

e ‘Vector space model’. k-blades (made by ‘A’) are
quantitative oriented k-dimensional subspace
elements

e But we would like to represent ‘offset’ subspaces.
e This leads to the affine model (for flat subspaces)

and to the homogeneous model (spheres as
subspaces).



Dualization

e I,, is the pseudoscalar of m-space (highest order
blade, volume element)

e A* is part of I,,-space perpendicular to A:

A*=A-1,

e Example: bivector B, then B* = —n, normal
vector

DEMOdual



Cross product and normal vectors

e Cross product in 3D dual of outer product:

axb=—(anb)- I3

e Under a linear transformation f

flaxb) = Fl(a)x F1(b) detf
flanb) = f(a) A f(b)

e Use A instead of x



Meet

e Intersection operation is ‘dual of spanning’ in their
common space: (AN B)* = B* A A*. This gives

ANB=B"-A

e | his is called the meet of A and B.

DEMOmeetplanes

e \Well-known special case: meet of two planes in 13,
ANB=B"-A=A"xB*=nj xnp

but above formula applies to any intersection.



Affine model

e [ he framework for ‘homogeneous coordinates’
and ‘Plucker coordinates’

e Get affine/homogeneous spaces by using one
dimension for “point at zero”

— Point: P=e+psuchthate-p=20
— Vector: v such that e-v=20

— Tangent plane: bivector B such thate-B =20

DEMOaffine



Affine representation

e Line: point P, point @

L=PANQ=(e+p)A(e+q) =en(q—p)+(PAQ)

e Line: direction v, point P

L=PANv=ev+pAVvV

e Plane: ‘2-direction’ bivector B, point P

[NM=PAB=eB+pADB

Composite objects: use ‘A", ', ‘N’ and dual.



Plucker Revisited

GA Pllcker
point pP+e (p, 1)
line eN(q—pP)+PAQ

=P-Pet+Pxq)lz3|(p—q,pxq)

plane eB+pADB ?

dual plane | B* — (p-B*)e
= —(n—(p-n)e) [n, —p - nj

GA ‘labels’ 1, e and I3 determine multiplication and

interpretation rules automatically



Affine representation: examples

e Example 1: Intersection of line L = ue 4+ vl3 and
(dual) plane IN* =n — de is:

MNL=MN"-L=—(n-u)e— (vxn-—odu)

The ‘labels’ tell us that this is a point at location:

vV X n—ou

n-u

e Example 2: Distance of point P to plane M*;
MNP=MN"-P=§—n-p

Scalar outcome: oriented distance.

o Example 3: Intersecting lines DEMOaffinemeet



Homogeneous Model
Points are vectors p, q
Distances directly as p-q¢ = —3(p — q)?
Special point at infinity esc: (ex)2 =0, exc-p =1
Altogether (m + 2)-space representing E™
Blades represent k-spheres: 3-sphere pAgAr As
Flats are spheres through infinity: line ecc Ap A g

Very compact intersections, reflections, etc.



Spheres and planes
e Sphere (c,p) is dually the vector o = ¢+ 3p2ex
e Plane (n,d) is m = n — deco
e Sphere o perpendicular to plane w obeys w -0 = 0.

e Intersect two spheres:

o1 N\ O
ciAos = 1222 A(gy—o01)
oo — 071 g

perp. ;phe’re

e Reflect line £ in plane w: —w /. E

int. }glane




Computational issues

e Actual geometrical computations like Plucker
coordinates, so rather efficient.

e However, potential basis for elements much
bigger: 2N+2 for homogeneous model of n-space
(i.e. 32 for 3-space).

e All products are linear, so expressible as matrix
multiply: aAb — [a”][b], for 32 x 32 matrices.
Some reducing tricks possible (and so done in
GABLE), but too expensive in time and space.

e Should make efficient coding of only the
necessary elements involved in a computation.
Gives Plucker efficiency for spheres.



GABLE is freeware

For a free copy of GABLE and a geometric algebra

tutorial, see

http://www.science.uva.nl/"leo/clifford/gable.html

http://www.cgl.uwaterloo.ca/ " smann/GABLE/



